

Fig. 2. Relative orientations of the twin components at the twin boundary. The twin boundary is shown by the broken line. The fractional a coordinates are shown as percentages of the a length.
sites in the above compounds are all more distorted than those at the $\mathrm{Li}(1)$ sites.

Fig. 2 shows a probable model for twinning. The twin symmetry relating the two twin components is 2_{1} parallel to a , by which the arrangements of the O, Si and $\mathrm{Li}(2)$ atoms remain almost unchanged since originally they have pseudo 2_{1} symmetry. The positions
of the Zn and $\mathrm{Li}(1)$ atoms are also approximately related to each other by 2 , symmetry, and further Zn^{2+} and Li^{+}ions in fourfold coordination have nearly equal effective ionic radii (Whittaker \& Muntus, 1970). Therefore the ZnO_{4} and $\mathrm{Li}(1) \mathrm{O}_{4}$ tetrahedra at the twin boundary do not suffer significant distortions.

The authors thank Professor Y. Umegaki for his continued interest and encouragement. One of us (HY) also thanks Professor Y. Takaki for his helpful suggestions.

References

Ashida, T. (1973). UNICS-Osaka, pp. 55-61. The Computation Center, Osaka Univ.
Howie, R. A. \& West, A. R. (1974). Acta Cryst. B30, 2434-2437.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Nes, G. J. H. \& Vos, A. (1978). Acta Cryst. B34, 19471956.

Setoguchi, M. (1979). Yogyo Kyokai Shi (in Japanese), 87, 51-57.
Setoguchi, M. \& Sakamoto, C. (1974). J. Cryst. Growth, 24/25, 674-676.
Whittaker, E. J. W. \& Muntus, R. (1970). Geochim. Cosmochim. Acta, 34, 945-956.
Yu, S., Smith, D. K. \& Austerman, S. B. (1978). Am. Mineral. 63, 1241-1248.
Zemann, J. (1960). Acta Cryst. 13, 863-867.

Structure of Cobalt Dilithium Silicate $\beta_{1 \mathrm{II}}-\mathrm{Li}_{2} \mathrm{CoSiO}_{4}$

By Hiroshi Yamaguchi and Kyube Akatsuka
Department of Earth Science (Mineralogy), Osaka Kyoiku University, Tennoji, Osaka 543, Japan
Masahiro Setoguchi
Government Industrial Research Institute, Osaka, Ikeda 563, Japan
and Yoshito Takaki
Department of Physics, Osaka Kyoiku University, Tennoji, Osaka 543, Japan

(Received 8 June 1979; accepted 25 July 1979)

> Abstract. $\mathrm{Li}_{2} \mathrm{CoSiO}_{4}$, orthorhombic, $P b n 2_{1}, a=$ 6.253 (5), $b=10.685$ (9), $c=4.929$ (9) \AA, $Z=4, D_{x}$ $=3.33 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K \alpha)=5.50 \mathrm{~mm}^{-1}$. The structure of the β_{II} modification has been solved by the heavy-atom method and refined by the least-squares method to $R=0.044$ for 789 observed reflections. The Co^{2+} ion is coordinated tetrahedrally by O atoms. The 0567-7408/79/112680-03\$01.00

Co-O distances range from 1.966 (5) to 1.983 (6) \AA with a mean of $1.975 \AA$.

Introduction. Crystals of $\beta_{\mathrm{II}}-\mathrm{Li}_{2} \mathrm{CoSiO}_{4}$ were grown from a LiCl flux (Setoguchi, 1979). They were granular in shape with diameters ranging from 0.3 to 2 mm . Weissenberg photographs of all 17 crystals examined © 1979 International Union of Crystallography
showed that the reflections with k odd were significantly broadened along \mathbf{b}^{*}, and that the degree of diffuseness varied from crystal to crystal. A crystal showing minimum (very small) elongation of diffuse reflections was selected for the data collection and ground to a sphere of diameter 0.2 mm . Systematic absences of the type $h 0 l$ for $h+l$ odd and $0 k l$ for k odd indicated that the space group is Pbnm or $P b n 2_{1}$. Cell dimensions and intensity data were measured on a Rigaku fourcircle diffractometer with graphite-monochromated Mo $K \alpha$ radiation. The cell dimensions were determined by a least-squares fit to the setting angles of 24 reflections. A total of 2798 reflections $\left(2 \theta<70^{\circ}\right)$ were measured with the $\omega-2 \theta$ scan technique, a scan range of $(1.2+$ $0.5 \tan \theta)^{\circ}$ and a receiving slit with an aperture of 3.5 $\times 3.5 \mathrm{~mm}$. The intensities were averaged to yield a set of 789 independent values after Lp corrections. No correction for absorption was made.

The space group $P b n 2_{1}$ was chosen for solving the structure. A three-dimensional Patterson map revealed positions of the Co atoms, and Si and O atoms were located from subsequent Fourier maps. The atomic parameters were refined to $R=0.09$ by the blockdiagonal least-squares method (HBLS V; Ashida, 1973) with isotropic temperature factors and unit weights. A subsequent difference map revealed the positions of the remaining Li atoms. Further refinements were continued for all atoms to $R=0 \cdot 06$. Atomic scattering factors for $\mathrm{Co}^{2+}, \mathrm{Si}, \mathrm{Li}^{+}$and O^{-}were taken from International Tables for X-ray Crystallography (1974).

At this stage it was found that $\mathrm{Li}(1)$ has a very small temperature factor $\left(B=0.2 \AA^{2}\right)$ compared with that of $\mathrm{Li}(2)\left(B=1.4 \AA^{2}\right)$. Therefore we recalculated a difference Fourier synthesis and found a remarkably large peak density at the $\mathrm{Li}(1)$ position. As shown in a separate paper (Takaki \& Yamaguchi, 1979), this large peak height was attributed to the superposition of a ghost due to truncation errors in the integrated intensity measurements of the diffuse reflections. Corrections of observed structure factors for reflections with k odd were made by multiplying by $1 / \varepsilon$, where ε^{2} is the ratio of an observed intensity recorded through the receiving slit to the total intensity of the diffuse reflection.

Table 1. Final atomic coordinates with their e.s.d.'s

	x	y	z
	y		
Co	$0.4930(1)$	$0.1648(1)$	$0.2544(5)$
Si	$0.2492(2)$	$0.4136(1)$	$0.2611(6)$
$\mathrm{Li}(1)$	$-0.0094(25)$	$0.1602(14)$	$0.2897(43)$
$\mathrm{Li}(2)$	$0.7394(18)$	$0.4244(11)$	$0.2553(52)$
$\mathrm{O}(1)$	$0.2489(8)$	$0.4105(4)$	$0.5896(9)$
$\mathrm{O}(2)$	$0.2533(7)$	$0.5578(4)$	$0.1525(10)$
$\mathrm{O}(3)$	$0.0309(7)$	$0.3410(4)$	$0.1521(10)$
$\mathrm{O}(4)$	$0.4644(7)$	$0.3420(4)$	$0.1481(10)$

According to Takaki \& Yamaguchi (1979), to a first approximation the value of ε can be taken as constant for reflections with given k (k odd), and it slightly increases with increasing k. In this study, however, we tentatively assumed the value of ε to be constant for all diffuse reflections. Least-squares calculations were then carried out for various values of ε, and a plausible value of 0.92 was chosen on the assumption that the temperature factor for the $\mathrm{Li}(1)$ atom is approximately equal to that for the $\mathrm{Li}(2)$ atom. A subsequent refinement with isotropic temperature factors for the Li atoms and anisotropic temperature factors for the Co, Si and O atoms gave the final R of $0 \cdot 044$. Final positional parameters are given in Table 1.* All computations were made on an ACOS System 800 computer of the Computation Center of Osaka University.

Discussion. Fig. 1 shows the structure viewed along c. It is based on a distorted hexagonal-close-packing arrangement of O atoms with layers stacked parallel to (001). The cations occupy half the available tetrahedral sites and are distributed over the sites on one side of the O layers; three of the four O atoms forming a cation-oxygen tetrahedron $\left(M \mathrm{O}_{4}\right)$ are in an O layer, and all pyramids of the MO_{4} tetrahedra have the same orientations with respect to the layer. The SiO_{4} and $\mathrm{Li}(2) \mathrm{O}_{4}$ tetrahedral pairs share corners to form a chain along \mathbf{a}, and these chains are held together through other corners, thus forming puckered layers parallel to (010). In the same way, the CoO_{4} and $\mathrm{Li}(1) \mathrm{O}_{4}$ tetrahedral pairs form a chain along a, and these chains also form puckered layers parallel to (010). These two kinds of layers are held together through common corners to

Fig. 1. The crystal structure viewed along c.

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$

SiO_{4} tetrahedron		$\mathrm{O}(1)-\mathrm{O}(2)$	2.668 (7)	$\begin{gathered} \mathrm{O}-\mathrm{M}-\mathrm{O} \\ \text { angles } \end{gathered}$
$\mathrm{Si}-\mathrm{O}(1)$	1.619 (6)			
-O(2)	1.632 (6)	-O(3)	2.657 (7)	108.3 (3)
-O(3)	1.659 (6)	-O(4)	$2 \cdot 662$ (7)	109.3 (3)
-O(4)	1.645 (6)	$\mathrm{O}(2)-\mathrm{O}(3)$	2.702 (7)	110.4 (3)
		-O(4)	2.656 (7)	108.3 (3)
		$\mathrm{O}(3)-\mathrm{O}(4)$	2.710 (7)	110.2 (3)
CoO_{4} tetrahedron				
$\mathrm{Co}-\mathrm{O}(1)$	1.966 (5)	$\mathrm{O}(1)-\mathrm{O}(2)$	3.173 (7)	$106 \cdot 9$ (2)
-O(2)	1.983 (6)	-O(3)	$3 \cdot 178$ (7)	107.4 (2)
-O(3)	1.976 (6)	-O(4)	$3 \cdot 245$ (7)	$110 \cdot 9$ (2)
-O(4)	1.973 (6)	$\mathrm{O}(2)-\mathrm{O}(3)$	$3 \cdot 224$ (7)	109.1 (2)
		-O(4)	3.328 (7)	114.6 (2)
		$\mathrm{O}(3)-\mathrm{O}(4)$	$3 \cdot 189$ (7)	107.7 (2)
$\mathrm{Li}(1) \mathrm{O}_{4}$ tetrahedron				
$\mathrm{Li}(1)-\mathrm{O}(1)$	1.96 (4)	$\mathrm{O}(1)-\mathrm{O}(2)$	$3 \cdot 146$ (7)	103 (2)
-O(2)	2.05 (4)	-O(3)	$3 \cdot 229$ (7)	107 (2)
-O(3)	2.06 (4)	-O(4)	$3 \cdot 151$ (7)	115 (2)
-O(4)	1.78 (4)	$\mathrm{O}(2)-\mathrm{O}(3)$	$3 \cdot 313$ (7)	107 (2)
		-O(4)	$3 \cdot 198$ (7)	113 (2)
		$\mathrm{O}(3)-\mathrm{O}(4)$	$3 \cdot 158$ (7)	111 (2)
$\mathrm{Li}(2) \mathrm{O}_{4}$ tetrahedron				
$\mathrm{Li}(2)-\mathrm{O}(1)$	2.01 (2)	$\mathrm{O}(1)-\mathrm{O}(2)$	$3 \cdot 319$ (7)	113 (1)
-O(2)	1.97 (2)	-O(3)	$3 \cdot 212$ (7)	103 (1)
-O(3)	2.09 (2)	-O(4)	3.224 (7)	107 (1)
-O(4)	2.00 (2)	$\mathrm{O}(2)-\mathrm{O}(3)$	3.227 (7)	105 (1)
		-O(4)	3.231 (7)	109 (1)
		$\mathrm{O}(3)-\mathrm{O}(4)$	3.542 (7)	120 (1)

form a three-dimensional framework. This structure is isotypic with that of the low-temperature form of $\mathrm{Li}_{3} \mathrm{PO}_{4}$ (Keffer, Mighell, Mauer, Swanson \& Block, 1967) and essentially the same as that of $\gamma_{11}-\mathrm{Li}_{2} \mathrm{ZnSiO}_{4}$ (Yamaguchi, Akatsuka \& Setoguchi, 1979) with the exception that the orientations of the SiO_{4} and $\mathrm{Li}(2) \mathrm{O}_{4}$ tetrahedra in a chain are antiparallel to each other, giving shared edges between each of the $\mathrm{Li}(2) \mathrm{O}_{4}-\mathrm{ZnO}_{4}$ and $\mathrm{Li}(2) \mathrm{O}_{4}-\mathrm{Li}(1) \mathrm{O}_{4}$ tetrahedral pairs.

Selected bond distances and angles are listed in Table 2. The SiO_{4} tetrahedra are quite regular with a mean $\mathrm{Si}-\mathrm{O}$ distance of $1.639 \AA$. The LiO_{4} tetrahedra show marked departures from a regular tetrahedron. The $\mathrm{Li}-\mathrm{O}$ distances range from 1.78 (4) to 2.06 (4) \AA for $\mathrm{Li}(1)$ and from 1.97 (2) to 2.09 (2) \AA for $\mathrm{Li}(2)$ with mean values of 1.96 and $2.02 \AA$ respectively. These mean values may be compared with those of 1.96 and $2.01 \AA$ in $\mathrm{Li}_{3} \mathrm{PO}_{4}$ and 1.97 and $2.01 \AA$ in $\gamma_{1{ }^{-}}$
$\mathrm{Li}_{2} \mathrm{ZnSiO}_{4}$ for the corresponding $\mathrm{Li}(1)$ and $\mathrm{Li}(2)$ tetrahedral sites. Note that the coordination tetrahedra at the $\mathrm{Li}(2)$ sites in the above compounds are all more distorted than those at the $\mathrm{Li}(1)$ sites.

The Co^{2+} ions are coordinated tetrahedrally by O atoms. The $\mathrm{Co}-\mathrm{O}$ distances range from 1.966 (5) to 1.983 (6) \AA with a mean of $1.975 \AA$. The angles vary from $106.9(2)$ to $114.6(2)^{\circ}$. The $\mathrm{O}-\mathrm{O}$ distances along tetrahedral edges range from $3 \cdot 173$ (7) to 3.328 (7) \AA. It is of interest to compare the above tetrahedron with that in $\mathrm{Co}_{2} \mathrm{Mn}_{3} \mathrm{O}_{8}$ (Riou \& Lecerf, 1975) which is, with the exception of the spinel structure $\left(\mathrm{Co}_{3} \mathrm{O}_{4}\right.$; Knop, Reid, Starno \& Nakagawa, 1968), the only case where detailed dimensions for the coordination tetrahedron about Co^{2+} have been reported. The values for $\mathrm{Co}_{2} \mathrm{Mn}_{3} \mathrm{O}_{8}$ are: $\mathrm{Co}-\mathrm{O}$ distances ranging from 1.91 to $2.02 \AA$ with a mean of $1.95 \AA$, angles from 106.6 to 112.5° and $\mathrm{O}-\mathrm{O}$ distances from 3.15 to $3.27 \AA$. Comparison of the above two sets of values suggests that the coordination tetrahedra about Co^{2+} in the two compounds are very similar to each other. In addition the variances in tetrahedral angles $\left[\sigma_{\theta}^{2}=\sum_{i}\left(\theta_{i}\right.\right.$ - 109.47) ${ }^{2} / 5$ (Robinson, Gibbs \& Ribbe, 1971)] are 8.52 and 6.13 for $\beta_{1 \mathrm{II}}-\mathrm{Li}_{2} \mathrm{CoSiO}_{4}$ and $\mathrm{Co}_{2} \mathrm{Mn}_{3} \mathrm{O}_{8}$ respectively, showing that the CoO_{4} tetrahedra in both compounds are slightly distorted.

The authors thank Professor Y. Umegaki for his continued interest and encouragement.

References

Ashida, T. (1973). UNICS-Osaka, pp. 55-61. The Computation Center, Osaka Univ.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Keffer, C., Mighell, A., Mauer, F., Swanson, h. \& Block, S. (1967). Inorg. Chem. 6, 119-125.
Knop, O., Reid, K. I. G., Starno \& Nakagawa, Y. (1968). Can. J. Chem. 46, 3463-3476.

Riou, A. \& Lecerf, A. (1975). Acta Cryst. B31, 24872490.

Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Setoguchi, M. (1979). To be published.
Takaki, Y. \& Yamaguchi, H. (1979). To be published.
Yamaguchi, H., Akatsuka, K. \& Setoguchi, M. (1979). Acta Cryst. B35, 2678-2680.

